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Motion of a particle is examined during jet discharge of a viscous
liquid in the region Re = 300 with a hydrodynamic resistance
coefficient which takes account of all the inertial terms,

To solve practical problems connected with jet dis—
charge of dust~laden gases and liquids, in which there
are solid particles, we need to determine the mean
free path of a particle, its relative velocity, as well
as the time during which the particle or the drop of
liquid has this relative velocity.

Fig. 1. Schematic of the motion in a circular
free jet.

Exact calculation of the trajectory of a particle in
the aerodynamic resistance force field of a jet is quite
a difficult problem, An attempt was made in reference
in [1] to determine the trajectory of a particle in such
a field. However, in the calculations a hydrodynamic
resistance coefficient ¢ was assumed for the medium,
partially taking into account the inertia terms, It was
shown in [2, 3] that use of a coefficient ¥, partially
taking account of inertia terms (V; = const) for the de-
celerated motion of the particles (V, — 0) leads to con-
siderable errors, which increase with increase of the
Reynolds number (Re — 300).

We shall examine the motion of a particle in a cir-
cular free jet, issuing into a secondary stream, which
moves with constant velocity (Vg = const), in the re-
gion Re = 300. We shall assume that the flow possess-
es axial symmetry, and the x axis coincides with the
axis of the jet. The coordinate origin is located in the
center of the plane of the aperture from which the jet
issues (Fig. 1).

The external pressure stream at the jet boundary
is constant and therefore the pressure gradient 8p,/8x =
= 0 (since V4 = const). The velocity of the stream
V(x,r) in the circular free jet may be calculated by one
of the theories described in references [4—10],

For the case under examination we accept the dif-
fusion method of vorticity transport described in [4;
10], which gives satisfactory agreement with experi-
mental data, The essence of this method is that the

differential equations of motion for the momentum p,V3
must be analogous to the equations of molecular diffu~
sion or heat conduction, since experimental measure-
ments have shown that the distribution of velocities in
transverse sections along the path of the mixing (the

x axis) are a good approximation to the Gaussian error
curve, Therefore, to solve the differential equations
the following condition is assumed: the intensity of
transport of momentum corresponding to component
V; in the transverse direction (along the r axis), with
velocity Vy is proportional to thé change of the
momentum flux pivi in this transverse direction,
i.e.,
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The equation of motion in the projection on the x axis
is as follows:
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Substituting the values V, = V + V, into (2) we obtain
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Neglecting terms containing the viscosity and the
pressure, and also faking p; = const, we shall write
the equation of conservation of momentum on the basis
of (3) to be
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Fig, 2. Qualitative picture of the behavior
of particle trajectories in the phase plane
pox.
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Assuming V}Z( = Vé + V2, where V2% = 2Vs\—/'0 + Vg + 02
Eq. (4) may be transformed into the following form:
J -2 1 0 av?
—V =1L — | —. 5
x «) 0r( ar) )
In the case when the distribution of velocities is

similar in successive cross sections, we may write

v v V.
i = (L), e = f (L), JLmex . 6
T F(G) fi (&) v, F(&) (6)
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This condition of similarity of profiles is observed in
two cases: when V,/Vg > 1, and also when V,/Vg « 1,
We shall examine the case when Vg =10,

Assuming VZ/\—% = f(L)f (£g), where & and ¢, are
determined by relations (6), we obtain a solution of
Eq. (5)

V(x, r):CVdie
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From Eq. (7) we may obtain the value of the veloci-
ty V(x, 0) on the jet axis ({9 =0)

V(x, 0)=CVq D 8)

x+a

Having determined the law of variation of velocity
V (x, r) along the x axis, we shall write down the dif-
ferential equation of motion of a particle in the field
of the aerodynamic resistance force of the medium
for the region Re < 1 ( = 24/Re):

dVv
m—L = 3nndV,, 9
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where V; is the relative velocity of the stream with
respect to the particle

Vo=V (x, r)— V,. (10)

Substituting the value \—IO from (10) into (9) and assum-
ing V(x, r) = V (x, 0), we may write, following appro-
priate transformations, the differential equation of
motion of the particle along the jet axis in the following
form

(@ +ax) =y, (11)

where o = 18n/d%p,; v = CVy/Dd.
The solution of the non-linear equation (11) may be
written as
g YEXPEZY) (12)
a ¥ exp(2¥/2vy)dz

where z = ax + x',

Equation (12) cannot be solved in elementary func-
tions and may be solved graphically, However, without
loss of generality and without large errors, an approx-
imate solution of (11) may be found.

We shall analyze the behavior of the trajectories
(integral curves) of motion of a particle described by
the differential equation (11), To do this we shall con-
struct a picture of phase trajectory in the phase plane.

By the substitution p = x', pp' = X" we shall trans-
form Eq. (11) to the following forms:

iil'i_:_,y____a. (13)
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Analysis shows that dp/dx = 0 determines a hyper-
bola. When dx/dp = 0, —dp/dx = «= we have vertical
tangents. There are no singular points. The axis p =
= vy fox, which in turn approaches the x axis asymp-
totically. This indicates that the particle velocity V,
asymptotically approaches zero with increasing dis-
tance from the nozzle.
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Fig. 3. Relative particle velocity V, (m/sec) ver-
sus the time t (sec) for & (u);: 1—500; 2—200; 3—
100; 4—50; 5—10.

For an approximate solution of Eq. (11) we shall
use a method of successive integration, taking the gas
velocity at each time step to be constant and equal to
its value at the beginning of the step. Then, by differ-
entiating (10) with respect to time, and substituting
the value of dV,/dt into Eq. (11), following the appro-
priate transformations, we obtain

(ﬁ{o_
Vo

Integrating (14) within the limits t; = 0 and ty3=1t
and the velocity from V, to V= V(x,r), we obtain

- —adt. (14)

Ve=V(x, ryexp(—at). (15)

As is seen from Fig, 3, particles with d = 50 u are
decelerated by the medium in the course of 0.12 sec
{the value of relative velocity between the particle and
the stream is approximately zero after this time in-
terval). Particles with d = 10 y are decelerated by the
medium in a time ~0.01 sec.

The motion of coarser particles (d > 50 u), how-
ever, takes place in the region Re = 300. K was shown
in references [2, 3] that the use of a hydrodynamic re-
sistance coefficient of the medium, partially taking
into account inertia terms (V; = const) during the de-
celeration of the particles, and also the use of the co-
efficient = 24/Re for the region Re > 1 leads to con-
siderable errors.

During jet discharge of dust-laden gases, as the
result of lowering of the velocity of the gas, a relative
velocity arises between the particle and the stream.
The value of the relative velocity V, varies from the
highest to the lowest values (V, —= 0), since the par-
ticle is decelerated by the medium,

The differential equation of motion of a particle in
the region Re = 300 is as follows:

av, B\ md® )
mS2=(a ) oV (16)
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where A and B are constants equal to 0.12 and 37, re-
spectively, for the region Re = 300 [2], taking into
account inertia terms during the decelerated change
of relative velocity. For more exact calculation we
must take A and B equal to 0.055 and 50 for the region
100 < Re = 300; 0.805 and 37 for the region 6 <Re =
= 100; and 4.45 and 24 for the region Re = 6 [2].

Taking V(x,r) = const for successive integration
(for a chosen pitch), we shall transform the differen-
tial equation (16) to the following form:

W
ﬁvg +o Vo
where § = 0.7640,(d p,)"%; @ = 0.75B n(d?p,) "

Integrating (17) within the same limits as in (14),
we obtain

dt = , an

1 Vell 2V (s 0l

t = s
@ Vix, nN{l +LV}

(18)

where ¢ = Ad(BV)—i.

Knowing the value of velocity V(x, r) (Eqgs. (7) and
(8)), we choose a value of pitch, depending on the re-
quired degree of accuracy, and determine the particle
trajectory by a successive computation method, More-
over, the equations (15) and (18) obtained allow us to
determine the relative velocity and the time during
which the particle has the relative velocity.

By way of example we shall determine the time t
for which the relative velocity attains the values Vi =
= 50 m/sec for a particle with d = 100 p for V(x, 0) =
= 150 m/sec, p,= 2000 kg/m3, 7=1.98 - 107° N -

- sec/m? p; = 1.3 kg/m®, From Eq. (18), t = 0.813
sec, For the same conditions, but from Eq. (15), t=
= 0,061 sec.

It is seen from the example given that considerable
errors arise in using Eq. (15) to calculate the time t
when the particle in fact is moving in the region Re >
>1.
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NOTATION

Vx, Vy—components of absolute velocity of the jet in a cylindrical
coordinate system x, I, m/sec; Vs—absolute velocity of a second-
ary stream into which the jet discharges, m /sec; Vz—excess veloc-
ity Vg, i.e., Vx = Vp + Vo, m/sec; Vg—discharge velocity of the
jet from the nozzle, m/sec; Vy—particle velocity, m/sec; Vo~
relative velocity of the particle, m/sec: 1, v—viscosity of the
medium, Nesec/m? and m%/sec; P1, Pe—densities of the medium
and of the particle, kg/m3; d~particle diameter, m; t—time,

sec; D—nozzle diameter, m; &y = (x -+ a)/D; Lo = r/[D (x + a)|°%
a, C—constants.
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